Issues Raised by Extreme Heterogeneity in Analytics

ASCR Extreme Heterogeneity Workshop

E. Wes Bethel, LBNL 23 Jan 2018

Data: Product or Source?

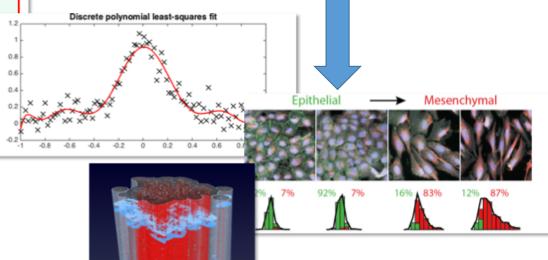
Data Analytics:
From data, derive a
model, model parms,
quantitative information

JUNSORS

Modeling/simulation: Solution to equations produces data.

Navier-Stokes momentum equation (convective form)

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla \bar{p} + \nu \nabla^2 \mathbf{u} + \tfrac{1}{3} \, \nu \nabla (\nabla \cdot \mathbf{u}) + \mathbf{g}.$$



Heterogeneity in Use Cases, Data Sources

- Distributed collection of multi-modal sensors, produce curated data products (e.g., ARM/PNNL)
- Science user facility, individual experiments that produce data (e.g., ALS/LBNL, LCLS/SLAC, APS/ANL, SNS/ORNL, ...)
 - Near-instrument processing
 - At-HPC center processing
 - Complex, multistage data-centric processing needs
 - Data lifecycle concerns
- Traditional computational science, simulation and modeling
 - Scale: Individual PI/project team, community-wide efforts
 - Data lifecycle concerns
- Lots of others:
 - Precision, personalized medicine
 - Cybersecurity, facilities operations

Heterogeneity in the Way Data is Used

- Datasets that are input to a method or aggregation
 - · Hypothesis testing, discovery
- Collections that promote and facilitate scientific advances
 - Produced, shared by a community (e.g., AR, CMIP, SDSS, ...)
- For training
 - Curated collections of labelled data for training supervised ML
- For optimization
 - Tune, optimize experiments
- For inference and prediction
- Note #1: the close symbiotic relationship (synergy) between data and compute
- Note #2: software and parameters are also "data"

Industry view (probably biased). More info: t.co/pXhCFOFvUz t.co/40ykMOLvNr. We need a similar diagram for science uses of data.

Heterogeneity in Methods and Software Environment (Partial View)

Analytics: Performance and Portability

Individual methods:

- Statistical/quantitative analysis, feature detection, learning, inference, visualization, ...
- Portable node-level parallelism, hybrid parallelism
- Write once, run everywhere
 - X86, GPU, FPGA, TPU, NM, ...

Potential paths:

- Traditional BSP design pattern:
 - MPI+X: where X provides for portable node-level parallelism
 - OpenMP 4.5: offload code onto accelerators (from FSD)
- Alternate design pattern:
 - UDF in "hosted" environment or runtime system
 - Spark, TECA/DAGR, Legion, etc.
 - Traditional HPC vs. "Big Data" software stack

EH Trends

- 1. Increasing parallelism
- 2. Heterogeneous hardware acceleration
- 3. Data movement costs more than computation
- 4. Performance heterogeneity
- 5. New memory and storage technologies
- 6. User requirements

Analytics: Performance and Portability

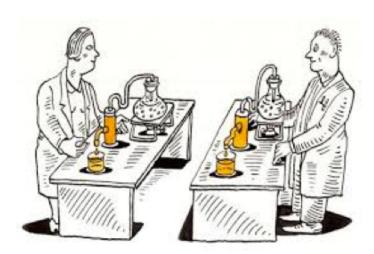
- Aggregations of methods:
 - A sequence of individual methods
 - Data model and data movement issues
 - Resource marshaling and provisioning issues
 - Heterogeneous components:
 - OTS segmentation -> custom feature detection -> TensorFlow inference
- Potential paths:
 - Traditional workflow: Kepler, Tigris, etc.
 - Wide area (data movement): Globus, etc.
 - Analytics "environments":
 - TensorFlow [, Caffe, PyTorch, ...], Jupyter, ...
 - UDF-based (TECA/DAGR, ArrayUDF, Spark, ...)
- Note: these could be considered "workflow" issues, which Ewa will discuss next

EH Trends

- 1. Increasing parallelism
- 2. Heterogeneous hardware acceleration
- 3. Data movement costs more than computation
- 4. Performance heterogeneity
- 5. New memory and storage technologies
- 6. User requirements

Analytics: Reproducibility and Repeatability

- Desired outcome:
 - Yourself and others can reliably reproduce results of a computation
- What are the components?
 - Data, code, system environment (h/w, s/w)
 - Source code for methods: C++, Python, ...
 - Environment: compiler, O/S, software environment (TensorFlow, PyTorch, MPI, VisIt, ...)
 - DNN network topology, CART topology, etc.
 - Problem configuration: processing steps, ordering, parameters (layer weights, etc.), ...
- Why is it important?
 - Integrity of scientific results
 - Basis for comparison of new methods: is the new method any better?
 - Preservation of knowledge
- How are we going to do this?



Closing Thoughts

- How to achieve performance and portability: 5, 10, 20 yrs?
 - Researcher/developer viewpoint
 - Scientist/consumer viewpoint
- Do we need abstractions for memory and storage hierarchy?
 - E.g., language-level constructs in CUDA
- Or do we let the language/compiler/environment take are of this?
 - PGAS memory model
 - Spark data/memory management
- Diversity in resources, policies and its impact on deployment, operations
- Tradeoffs between wanting to facilitate innovation, research and having a stable, predictable, maintainable ecosystem
- What can we "count on" being there for us in 5, 10, 20 yrs out?

EH Trends

- 1. Increasing parallelism
- 2. Heterogeneous hardware acceleration
- 3. Data movement costs more than computation
- Performance heterogeneity
- 5. New memory and storage technologies
- 6. User requirements